7 research outputs found

    Techniques of deep learning and image processing in plant leaf disease detection: a review

    Get PDF
    Computer vision techniques are an emerging trend today. Digital image processing is gaining popularity because of the significant upsurge in the usage of digital images over the internet. Digital image processing is a practice that can help in designing sophisticated high-end machines, which can hold the ophthalmic functionality of the human eye. In agriculture, leaf examination is important for disease identification and fair warning for any deficiency within the plant. Many prominent plant species are facing extinction because of a lack of knowledge. A proper realization of computer vision techniques aid in extracting a significant amount of information from leaf image. This necessitates the requirement of an automatic leaf disease detection method to diagnose disease occurrences and severity, for timely crop management, by spraying pesticides. This study focuses on techniques of digital image processing and machine learning rendered in plant leaf disease detection, which has great potential in precision agriculture. To support this study, techniques exercised by various researchers in recent years are tabulated

    Search Graph Magnification in Rapid Mixing of Markov Chains Associated with the Local Search-Based Metaheuristics

    No full text
    The structural property of the search graph plays an important role in the success of local search-based metaheuristic algorithms. Magnification is one of the structural properties of the search graph. This study builds the relationship between the magnification of a search graph and the mixing time of Markov Chain (MC) induced by the local search-based metaheuristics on that search space. The result shows that the ergodic reversible Markov chain induced by the local search-based metaheuristics is inversely proportional to magnification. This result indicates that it is desirable to use a search space with large magnification for the optimization problem in hand rather than using any search spaces. The performance of local search-based metaheuristics may be good on such search spaces since the mixing time of the underlying Markov chain is inversely proportional to the magnification of search space. Using these relations, this work shows that MC induced by the Metropolis Algorithm (MA) mixes rapidly if the search graph has a large magnification. This indicates that for any combinatorial optimization problem, the Markov chains associated with the MA mix rapidly i.e., in polynomial time if the underlying search graph has large magnification. The usefulness of the obtained results is illustrated using the 0/1-Knapsack Problem, which is a well-studied combinatorial optimization problem in the literature and is NP-Complete. Using the theoretical results obtained, this work shows that Markov Chains (MCs) associated with the local search-based metaheuristics like random walk and MA for 0/1-Knapsack Problem mixes rapidly

    Search Graph Magnification in Rapid Mixing of Markov Chains Associated with the Local Search-Based Metaheuristics

    No full text
    The structural property of the search graph plays an important role in the success of local search-based metaheuristic algorithms. Magnification is one of the structural properties of the search graph. This study builds the relationship between the magnification of a search graph and the mixing time of Markov Chain (MC) induced by the local search-based metaheuristics on that search space. The result shows that the ergodic reversible Markov chain induced by the local search-based metaheuristics is inversely proportional to magnification. This result indicates that it is desirable to use a search space with large magnification for the optimization problem in hand rather than using any search spaces. The performance of local search-based metaheuristics may be good on such search spaces since the mixing time of the underlying Markov chain is inversely proportional to the magnification of search space. Using these relations, this work shows that MC induced by the Metropolis Algorithm (MA) mixes rapidly if the search graph has a large magnification. This indicates that for any combinatorial optimization problem, the Markov chains associated with the MA mix rapidly i.e., in polynomial time if the underlying search graph has large magnification. The usefulness of the obtained results is illustrated using the 0/1-Knapsack Problem, which is a well-studied combinatorial optimization problem in the literature and is NP-Complete. Using the theoretical results obtained, this work shows that Markov Chains (MCs) associated with the local search-based metaheuristics like random walk and MA for 0/1-Knapsack Problem mixes rapidly

    Immunofluorescence in Oral Pathology—Part II: Pathology and Immunofluorescent Patterns in Subepidermal Immunobullous Disorders

    No full text
    corecore